Decoding ^ Eurocode 7 Preparing for the 2nd-generation Eurocode 7

DR ANDREW BOND (GEOCENTRIX) CHAIR B/526 GEOTECHNICS PAST-CHAIR TC250/SC7 GEOTECHNICAL DESIGN Decoding ^{2nd generation} Eurocode 7 Preparing for the 2nd-generation Eurocode 7

- 2nd-generation Eurocodes what are they and when are they coming?
- Key technical changes in Eurocode 7 from the 1stgeneration
- Summary of key points

2nd-generation Eurocodes what are they and when are they coming? PREPARING FOR THE 2ND-**GENERATION EUROCODE 7**

Overview of the 2nd generation Eurocode suite

2nd generation Eurocodes Core geotechnical design standards

2nd generation – transformation of Eurocode 7 into 3 Parts

Contents of Eurocode 7 Part 3: Geotechnical structures

Timeline for the second-generation Eurocodes (Denton et al., 2024)

Timeline for the second-generation Eurocodes (Bond, 2023)

Decoding Eurocode 7 ©2005-2024 Geocentrix Ltd. All rights reservec

Key technical changes in Eurocode 7 from the 1stgeneration PREPARING FOR THE 2ND-**GENERATION EUROCODE 7**

Assumptions made by EN 1997

In addition to the assumptions given in EN 1990, EN 1997 (all parts) assumes:

Decod

ew

ode

New

ocentrix Lto

New

- ground investigations are planned by individuals or organizations knowledgeable about potential ground and groundwater conditions
- ground investigations are executed by individuals with appropriate skill and experience
- evaluation of test results and derivation of ground properties from ground investigation are carried out by individuals with appropriate geotechnical experience and qualifications
- data required for design are collected, recorded, and interpreted by appropriately qualified and experienced individuals
- geotechnical structures are designed and verified by individuals with appropriate qualifications and experience in geotechnical design
- adequate continuity and communication exist between individuals involved in data-collection, design, verification and execution

Revised definition of the Geotechnical Category

Decoding Eurocode 7 ©2005-2023 Geocentrix Ltd. All rights reservec

New quences of failure							13	
cl	equence ass/ cription	Loss of human life*	Economic, social or environ- mental*	Examples of buildings where	Factor $k_{\rm F}$	Reliab- ility index, β_{50}	Prob- ability of failure, P _{f,50}	
CC4	Highest	Extreme	Huge	Additional provisions can be needed				
CC3	Higher	High	Very great	people assemble e.g. grandstands, concert halls	1.1	4.3	~10 ⁻⁵	
CC2	Normal	Medium	Consider- able	people normally enter e.g. residential and office buildings	1.0	3.8	~10-4	
CC1	Lower	Low	Small	people do not normally enter e.g. agricultural buildings, storage buildings	0.9	3.3	~10-3	
CC0	Lowest	Very low	Insignificant	Alternative provisions	s may be	used		
*CC is chosen based on the more severe of these two columns								

Decoding Eurocode 7 @2005-2023 Geocentrix Ltd. All rights reserved

Basic requirements of EN 1997-1

The following models shall be used to verify the requirements for safety, serviceability, robustness, and durability of geotechnical structures:

- Ground Model
- Geotechnical Design Model

Ground Model

site specific outline of the disposition and character of the ground and groundwater based on results from ground investigations and other available data

Geotechnical Design Model

conceptual representation of the site derived from the ground model for the verification of each appropriate design situation and limit state Δ

Limit states

The following ultimate limit states shall be verified, as relevant:	1 st -gen	
 failure of the structure or the ground, or any part of them including supports and foundations, by rupture excessive deformation transformation into a mechanism buckling 	STR/GEO Jargon removed	
loss of static equilibrium of the structure or any part of it	EQU	
failure of the ground by hydraulic heave, internal erosion, or piping caused by excessive hydraulic gradient	HYD	
failure caused by fatigue	FAT	
failure caused by vibration		
failure caused by other time-dependent effects		

No single Design Approach – even in a country! (Bond and Harris, 2008)

Ultimate limit states must be verified using: $E_{\rm d} \leq R_{\rm d}$ For ultimate limit states caused by excessive deformation: $E_{\rm d} \leq C_{\rm d,ULS}$ Factors may be applied to material Factor may be applied to **actions**: properties: Verification Cases 1-3 Material factor approach (MFA) (Factored actions) or to effects of actions: or to resistance: Resistance factor approach Verification Case 4 (Factored effects) (RFA)

Verification of ultimate limit states

Partial factors for fundamental design situations (general application)

18

Action or effect				Partial factors $\gamma_{\rm F}$ and $\gamma_{\rm E}$ for Verification Cases 1-4					
Туре	Group	Symbol	Resulting effect	Struct- ural*	Static equilibrium Ge and uplift**			otechnical design	
				VC1	VC2(a)	VC2(b)	VC3	VC4	
Permanent action (G _k)	All	γ _G	unfavourable/						
	Water	γ _{G,w}	destabilizing						
	All	γ _{G,stb}						G _k is not factored	
	Water	𝖓 _{Gw,stb}	stabilizing						
	(All)	γG,fav	favourable	On actions					
Prestressing (P _k)		γ _P							
Variable	All	γ _Q	unfavourable						
action (Q _k)	Water	YQW						On	
	(All)	$\gamma_{\rm Q,fav}$	favourable					effects	
Effects-of-actions (E)		γ_{E}	unfavourable	wis pat applied					
		γ́E,fa∨	favourable	γ_{E} is not applied					
*Also used for geotechnical design; **Less favourable outcome of (a) and (b) applies Values taken from prEN 1990:2022, Annex A.1									

Decoding Eurocode 7 ©2005-2023 Geocentrix Ltd. All rights reserved

Partial factors for fundamental design situations (ground properties)

Ground property	Symbol	M1	M2				
Soil							
Shear strength in effective stress analysis ($ au_{ m f}$)	$\gamma_{ au { m f}}$						
Coefficient of peak friction (tan φ'_{p})	γ _{tanφ,p}	1.0	1.25 k _M				
Peak effective cohesion (c' _p)	γ _{c,p}						
Coefficient of friction at critical state (tan φ'_{cs})	γtan <i>φ</i> ,cs		1.1 k _m				
Coefficient of residual friction (tan φ'_r)	$\gamma_{tan\varphi,r}$						
Shear strength in total stress analysis (c _u)	$\gamma_{\rm CU}$		1.4 k _M				
Rock							
Unconfined compressive strength (q_{u})	$\gamma_{ m qu}$	Same as γ_{cu}					
Shear strength of rock (τ_r)	$\gamma_{ au r}$	1.0	1.25 k _M				
Unconfined compressive strength of rock (q $_{u}$)	$\gamma_{ m qu}$	1.0	1.4 k _M				
Discontinuities							
Shear strength of rock discontinuities ($ au_{ m dis}$)	$\gamma_{ au ext{dis}}$	1.0	1.25 k _M				
Coefficient of residual friction (tan $\varphi'_{dis,r}$)	$\gamma_{tan arphi,dis,r}$	1.0	1.1 k _M				

Summary of key points PREPARING FOR THE 2ND-GENERATION EUROCODE 7

Improvements in 2nd generation ... EN 1997 Geotechnical design

- Organizational changes to Eurocode 7
 - Clearer layout aids ease-of-navigation
 - Greater consistency with EN 1990 aids ease-of-use
- No more Design Approaches!
 - Simpler choice of partial factors
 - Material Factor or Resistance Factor Approach
- Catering for different groundwater conditions
 - Better specification of groundwater pressures
- Separating consequence from hazard
 - Clear distinction between consequence of failure and complexity of the ground
 - Geotechnical Categories now drive meaningful decisions

Decoding ^{2nd generation} Eurocodes www.geocentrix.co.uk/training

CLO AC I D D LPOANAGL TT R 0 0 0 0000

Our **2nd generation** courses include ...

- Decoding Eurocode 7
 - Basis of geotechnical design
 - Ground properties (and ground investigation)
 - Shallow foundations
 - Deep foundations
- Decoding Eurocode 3 Steel foundations

References

Steve Denton, David Nethercot, Andrew Bond, and Mariapia Angelino (2024), Eurocodes evolution: latest developments and UK approach, The Structural Engineer, Volume 102, Issue 3, pp12-14

Bond (2023), Technical note: Timeline and improvements for the second generation of Eurocodes, Ground Engineering, 14th November 2023 (http://tinyurl.com/y73ypban)

Decoding [^] Eurocodes Preparing for the 2ndgeneration Eurocode

WWW.GEOCENTRIX.CO.UK

WWW.DECODINGEUROCODE7.COM